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It is shown that there exists a close relationship between the analytic properties of the partial-wave ampli
tude as a function of complex-angular momentum / and those of the coefficients of expansions, other than 
the partial-wave expansion, as functions of the corresponding summation index, v. The case of power series 
in z, and in the Mandelstam variables t and u is studied in detail. We show how the /-plane Regge poles for 
Re/>— \ determine all the */-plane poles for Re*>>— \ and vice versa. For the relativistic amplitude we 
write a representation consisting of three double power series in s, t, and u. We establish the analytic prop
erties of the expansion coefficients in the two index variables which are implied by Regge analyticity in the 
/ plane of each channel. This enables us to apply the Watson-Sommerfeld transformation twice and obtain a 
crossing-symmetric Regge-type representation which simultaneously displays the contributions of the Regge 
poles in all three channels. 

I. INTRODUCTION 

REGGE poles appear when one considers an analytic 
interpolation of the partial-wave scattering ampli

tude for complex values of angular momentum, Ll The 
position of these poles in the / plane depends on the 
energy and in potential scattering one has a clear and 
simple relation between the poles and bound states and 
resonances. In fact one of the main attractive features 
of Regge's work in potential scattering is the unified 
treatment it provides for bound states and resonances. 

This feature and the simplicity of the asymptotic 
form of the scattering amplitude for large momentum 
transfers, has led several people to conjecture that re
sults similar to Regge's hold for relativistic scattering 
amplitudes and in quantum field theory.2 Some of these 
conjectures have been proved for certain simple models.3 

However, in the full theory the situation is far from 
clear and there are indications that the partial-wave 
amplitudes might have branch cuts as well as poles in 
the right-half / plane. 

So far the discussion of Regge poles and their conse
quences has been closely tied to the Legendre expansion 
of the invariant amplitude. This has at least two draw
backs. The first is that the partial-wave expansion is 
not explicitly crossing-symmetric and consequently the 
resulting Regge representation obtained by applying 
the Watson-Sommerfeld transformation will also not 
display this symmetry. The situation becomes more 
serious when one wants to perform bootstrap-type 
calculations where one wants to impose both crossing 
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symmetry and Regge behavior. In fact, it has not been 
known under what conditions are crossing symmetry 
and Regge behavior consistent with each other, if at 
all. All the models listed in Ref. 3 for which Regge 
properties have been proved are not crossing symmetric. 

The second drawback of the partial-wave expansion 
in this context is that the partial-wave amplitudes are 
defined by a complicated transform of the absorptive 
part which involves Legendre functions of the second 
kind, Qi. 

The purpose of this paper is twofold. The first is an 
attempt to free the Regge analysis from strict associa
tion with partial-wave expansions. In fact we show that 
if Regge poles exist at all, essentially the same poles 
will appear when one starts with expansions other than 
the partial-wave expansion. We devote special atten
tion to power series because of their simplicity. The 
possibility of using other expansions than the Legendre 
expansions enables us to achieve our second purpose 
which is to obtain a crossing-symmetric Regge formula. 
This is obtained by starting with double power series 
expansions in the Mandelstam variables s, t, and u. 

In Sec. I I we first prove two simple theorems. We 
show that if a function f(z) = ^a(l)Pi{z) is such that 
a (I) is meromorphic in I for Re/> — J, and as |/|—>co? 

a(l)^y/le~1^ £>0 , then if one expands f(z) in a power 
series, f(z)~J^vc(v)z% c{y) will again be meromorphic 
for Re^>—J. I t will have the same poles, a^ as a (I) 
plus poles at a3— 2, ay—4, • • • etc. The converse of this 
theorem is also shown to be true. A similar result holds 
if one expands the nonrelativistic scattering amplitude 
in powers of momentum transfer t, f(s,i) = YilvC,(v,s)tv. 

In Sec. I l l we discuss briefly the relativistic problem 
and show that results similar to those in the preceding 
section hold. One starts in this case by writing the 
invariant amplitude as the sum of two power series, 
one in the Mandelstam variable t and the other in u. 
The coefficients of these series are given by simple 
Mellin transforms of the t and u absorptive parts, re
spectively. As the singularities of the partial-wave 
amplitudes in the I plane are closely related to the 
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singularities of these coefficients in the v plane, one 
can either prove or disprove the conjectured Regge 
properties by studying these coefficients instead of the 
partial-wave amplitudes. 

Before we go to the full crossing-symmetric problem, 
we discuss in Sec. IV the case of a function of two 
variables, s and L We assume that the partial wave 
expansions of this function in either the s or t channel 
have properties similar to those proved by Regge for 
the partial-wave amplitude in potential scattering. 
Starting from a double power series expansion in s and 
/ we show that the coefficient of such an expansion can 
be analytically continued in both indices and will 
satisfy the properties necessary to apply the Watson-
Sommerfeld transformation twice. This will lead to a 
representation which exhibits the contributions of the 
Regge poles of both the s and t channels simultaneously. 

The generalization of the results of Sec. IV to the 
case of the full relativistic amplitude is relatively simple. 
In Sec. V we start by writing the full amplitude as the 
sum of three double power series, one corresponding to 
each of the three main terms in the Mandelstam repre
sentation. The same steps as in Sec. IV follow for each 
of these series and we obtain an explicitly crossing sym
metric Regge type representation. Finally, the condi
tions under which we obtained our result are briefly 
discussed. 

II. REGGE POLES AND POWER SERIES 
EXPANSIONS 

Regge poles show up when one considers the partial-
wave expansion of a function f(z), 

f{z) = ^a{l)Pl{z). (1) 
I 

For a large class of scattering amplitudes in potential 
scattering it has been shown that the coefficients a (I) 
have the following two properties. 

(i) a(l) has a unique interpolation which is mero-
morphic in the half-plane Re/> — J, with a finite 
number of poles at 1=<XJ, Re<x/> — ̂ . 

(ii) As |/|—»oo in the right- half plane a{l)^c^/le~1^, 
where £ is real and positive. 
Suppose now one expands the function f(z) in terms 
of other polynomials or to be more specific in power 
series in z, 

/(*) = £ c M * ' , v = 0 , l , 2 , . . . . (2) 

If a(l) satisfies (i) and (ii) then it is clear that the series 
(2) will converge for |z | < cosh J. 

Two questions now naturally arise. First, is there a 
unique analytic extension of the coefficients c(y) into 
the right-half v plane, and second, what relation if any 
exists between the singularities of c{v) and those of a(l)? 

Clearly, if f(z)^za as z-^oo then, if c(v) satisfies 
the conditions necessary for the application of the 

Sommerfeld-Watson transformation to (2), c(v) will 
have a pole at v=a just as a (I) has one at /=a . 4 In this 
section we shall prove two theorems which show that 
there exists an even closer relationship between the 
singularities of a (I) and those of civ). 
Theorem 1. If a (I) satisfies the conditions (i) and (ii) 
then there exists a unique interpolation of c(v) which 
is meromorphic in the half-plane Re*>>—|. The poles 
of c(v) will be the same set {<x/} as those of a (I) with 
additional poles at 

a3— 2, aj— 4, • • •, aj— In; § > Re (<x,— In) > — \. 

As Re^-^-oo in the half-plane, we have c{v) 
^[cosh£]~ , \ Also c{y) vanishes as | Imv | —>°°, Re^> — §. 

Proof, From (i) and (ii) it follows that one can apply 
the Watson-Sommerf eld transformation to (1) and 
obtain in the usual manner 

/(*) = - / tf—p^-*)-^-—! . (3) 
2t/_i__;00 sin7r£ J=I sin7ro:y 

If follows from (3) and (ii) that f(z) is analytic in the 
cut z plane and we can write 

1 r™D(z') 
/(*) = - / **', * o > l , (4) 

ffJ ZQ Z' — Z 

where for the moment we have neglected to write the 
necessary subtractions. The lower limit Zo is given by 
£o=cosh£ and £ is defined in (ii). 

We can now use (4) to get the following representa
tion for the coefficients c{v) 

1 r00 

c{v) = - \ Diz'y-^dz'. (5) 
IT J zo 

This last expression allows us to define a unique in
terpolation of the coefficients c(y) which is holomorphic 
in the region Rej/>Reai, where a\ is the pole furthest 
to the right in the / plane, for it is clear from (3) that 
D(z)^zal as z—>oo. I t is also evident from (5) that 
c(v)^(zQ)~Rev as Re*>—><*> in the half-plane. 

We can now continue c(y) to the region — J<Rei> 
< Reai. To do that we note that using (3) we can write 

D(z) = D0(z)+wi:^Paj(z). (6) 

Here DQ is the discontinuity of the background term 
and DQ(Z)^Z~112 as z—>°o. We, thus, obtain 

1 /»oo /»oo 

c(v)=- A,(2)z-*-^z+£ft/ Pai{z)7r^dz. (7) 
TJ 1 3 J 1 

4 This remark holds for expansions in any set of polynomials 
<f>v(z) which are such that 4>v(z)~zv as z—><*>. The author is in
debted to Professor M. Levy for bringing to his attention the 
point that the leading pole must be the same in all such expansions. 
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For convenience we have set the lower limits of integra
tion above to be unity instead of ZQ. This does not 
change c(v) since D(z) is zero in the region 1 <Z<ZQ. 

Now, the first term in (7) is regular in the region 
Rev>— J. The integrals in the second term can be 
carried out and give5 

r00 / H - a : + l \ fv-a\ / 

i r * r (H- l ) , R e a > - £ . (8) 

The right-hand side is obviously meromorphic in the 
region Re*>>— f with poles v=a,a— 2, • • -,a— 2n; 
—|<Re(a— 2»)<f . I t is also easy to show from (7) 
and (8) that c(v)—>0 as \Ivnv\ —><x>. This completes 
the proof of our theorem. 

The residues of the poles in the v plane are related 
in a simple way to the j3/s and can be easily computed 
from (8). 

I t is clear now that c{y) will satisfy the necessary 
conditions to enable us to apply the Watson-Sommerfeld 
transformation to the series (2). We obtain in the usual 
manner 

i /•-*+*» c(v) N> y/(—z)ai' 
/(*) = - / dv ( - * ) > - * £ _ , (9) 

2y_i_ioo sinx^ /=i sin7ra/ 

where a/ are the new poles and y/ are the new residues. 
Each term in (9) has a cut starting from 0 = 0 along 

the positive real axis. However, as we shall demonstrate 
later, one can easily show that the cuts of the first and 
second term cancel in the region 0<z<zo. 

The question now arises about the converse of 
Theorem 1. Namely, if one starts with (2) and is given 
the fact that c(v) has the following two properties: 

(i') c{v) has a unique interpolarion which is mero
morphic in the half-plane Re?>>—|, with a finite 
number of poles at v=a/, Reo:/> —\\ 

(ii') as Rev —»<*>, C(V)^(ZQ)~V and as |Iirn>|—»<*>, 
c(v) —> 0; what will be the properties of a{l) in that case? 

Theorem 2. If c{y) satisfies the conditions (i') and (ii') 
then a(l) will have a unique interpolation which is 
meromorphic in Re/> — J with poles at a/, a/—2, • • •, 
a/-2n; Re(a/-2n)>-%. As |/[-»«>, a(l)^c\/le~1^ 
Proof. The proof is very similar to that of Theorem 1. 
If (i') and (ii') hold then one can write (9) and this in 
turn will give us a dispersion relation in z as in (4). 
Using that we define a(l) in the usual manner by 

(2/+1) r 
a(l)= / Ql(z)D(z)dz. (10) 

7T J 20 

Clearly, this defines an analytic function in the region 
5 Tables of Integral Transforms, Bateman Manuscript Project, 

edited by A. firdelyi (McGraw-Hill Book Company, Inc., New 
York, 1953), Vol. 2, p. 320, (3). 

Rd> Rea / , where a± is the pole with the greatest real 
part in the v plane. To continue a (I) to the region Re/ 
< R e a / we use (9) to separate D{z) into two terms as 
in (6). One term, coming from the background, gives a 
contribution regular in Re/> —J, while the terms com
ing from the pole contributions in (9) will lead to 
integrals of the form, 

/.CO 

/ Ql{z)z«'dz=F(l,a'); R e o ' > - § . (11) 

This last integral can be performed6 and the result is 
regular in the region Re£> —J except for poles at l=a'y 

a'—2, • • ',a'—2n. The easiest way to see this however 
is to use the expression for Qi(z) in terms of a hyper-
geometric function of argument 1/z2, and then make 
use of the hypergeometric series. The asumptotic be
havior of a (J) follows easily from (9) and (10) and is 
closely related to the behavior of Qi(z), z>Zo, for 
large | / | . 

One detail which so far we have failed to mention in 
both Theorems 1 and 2 concerns the question of the 
uniqueness of the continuation to the left. Namely, in 
the case of Theorem 1 does c(v) as defined in (7) and 
(8) coincide for integral values of v = n, with ^ < R e a i , 
with the Tzth derivative of f(z) divided by n\ and 
evaluated at 2=0. Using (3) one can compute these 
derivatives and compare the result with (7) for v = ny 

n<Reai. The results are identical. 
In the two above theorems we have for simplicity 

limited the discussion to cases where a (I) and c{v) have 
only poles in their corresponding right half-planes. 
However, it is not difficult to generalize Theorem 1 to 
the case where a (I) has cuts of finite extension in the 
half-plane Re/> — §. Corresponding cuts will also show 
up in the v plane. The converse is also true. 

At first sight Theorems 1 and 2 seem to be contra
dictory for the number of poles seems to increase if we 
go from the / plane to the v plane and it also increases 
if we go from the v plane to the I plane. However, one 
can easily see that there are cancellations which avoid 
this contradiction. For example if we start with a(l) 
having one pole at l=a such that f < R e a < | , then in 
the v plane we would have two poles a±=a and a2' 
=a—2. Now suppose we start in the v plane with the 
poles v=a± and v=a2

f and go back to the I plane. 
Then we would have a pole at l=ai—a, but the residues 
will be such that the pole at l=ai'—2=a—2 will just 
cancel with the pole at l=a2^a—2. We thus get 
back to one pole at l=a in the / plane. Thus, it still 
makes sense to talk about the variable in which we 
have the least number of poles as the more natural one 
for the purposes of physical interpretation, if not for 
calculation. 

Another question which naturally arises at this stage 
concerns the relationship, if any, of the singularities 

6SeeRef. 5, p. 325, (26). 
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of a(l) in the left-half plane, Re /< —|, to those of c(v) 
in the half-plane Kev<— | . Do theorems similar to 1 
and 2 hold for the left half-planes? The answer to this 
question is in the negative since one can give a fairly-
simple counter example. Consider the function f(z) 
= (b—z)"~1; b>z. We can write the two expansions 

/ ( * ) = E ( 2 H - i ) g , ( a ) p , ( * ) , 
(12) 

/(*) = £*—V. 
v 

Thus in this case a(l)= (2l+l)Qi(b) and c(v) = b~v-\ In 
the right half-plane both have no poles. However, while 
a (I) has an infinite number of poles at Z= — 1, —2, •••, 
—n, • • •, in the region Re /< — J, c(v) is an entire func
tion of v and has no poles anywhere in the v plane. 

Theorems similar to 1 and 2 hold if instead of the 
power series expansion (2) we take expansions in terms 
of other polynomials, e.g., Gegenbauer polynomials, for 
example. However, in this paper we shall not go into 
the details of a general theorem giving the class of 
polynomials for which a result similar to Theorems 1 
and 2 holds. For what follows we shall be mainly in
terested in an expansion similar to (2), a power series 
expansion in the momentum transfer variable. 

In the above discussion we have suppressed the 
energy variable s. The amplitudes / are functions of s 
and the momentum transfer variable t, where 2 = 1 
+t/2s. We can consider the expansion 

f(s,t) = Zc'(V,s)t\ (13) 
V 

If (i) and (ii) hold for a(l,s) then (13) will converge for 
\t\ <to and £o=2s(cosh£— 1). A theorem similar to 
Theorem 1 will now hold for c'(v,s) except in the present 
case the poles of c' will be at v=a^ ay— 1, ay— 2, • • •, etc. 
The proof of such a theorem will be identical with that 
of Theorem 1. Following the same steps, we obtain an 
expression analogous to (7) for c'(v,s) 

1 r°° 
c'(y,s)=-\ D0(l+tf/2s)tf-v-W 

IT J f0 

+ Z Pi f PaiiX + t'/ls)?-*-W . (14) 
i J t0 

The first term above is regular in the region Rez>> — \. 
One has only to study the integrals in the second term 

/»00 

I(a,v) = p Pa(l+t/2s)rv-ldt, R e a > - J . (15) 

One can easily show that I(a,v) is regular in v in the 
region Re*>> — \ except for poles at v=a7a—l, •••, 
a—n\ where the integer n is defined by | > R e ( a — n ) 
> —2« This result follows most directly from the fact 

that Pa(x), x>l, R e a > — | , can be expanded in such 
a way as to factor out all the terms that grow faster 
than x~112 as x —*<*>. Namely, one has 

Pa(x) = go(a)xa+g1(a)x«-2-l 

+gn>(a)xt**n'+Ga(x). (16) 

Here the integer n' is determined by the condition 

§ > R e ( a - 2 » 0 > - i , 

and the function Ga(x) decreases at least as fast as 
x~112 as x—>oo. One can derive (16) from the expression 
for Pa(x) in terms of hypergeometric functions of argu
ment 1/x2.7 We can now substitute (16) in (15) and 
obtain 

I(a,v) = I0(a,v) 

7ok-{v-a) yik-(v~a+l) yJ<Tiv-a+n) 

+ + + • • • + ; 
v—a v—a+1 v — a-\~n 

4 > R e ( a - n ) > - i . (17) 

Here Io(a,v) is regular in the region Rei>> — J. The new 
residues, yy, are all proportional to /3. In the Appendix 
we give the expressions for the first few Yy's in terms of 
P and a. 

I t is easy to verify from (14) and (17) that as 
Re^—>o°, c'(v,s)~to~v and that as |Im^|—>co? c'(v,s) 
vanishes if Re*>> — §. 

We shall now write down the Watson-Sommerfeld 
transformation for (13) in order to show explicitly how 
one can write the pole contributions in such a way that 
they exhibit the right cuts in the t plane as was ac
complished for the usual Regge poles in an earlier 
paper of the author.8 For simplicity let us assume we 
have only one pole in the / plane with Rea(s)> — J. For 
11\ <tQ we can carry out the Watson-Sommerfeld trans
formation on (13) and obtain 

/(*,*)=-/ ( - O ^ - T E — — — — , 
2y_i_,-00 sin7r^ J=O s\mr(a—j) 

i>Re(a-n)>-h (18) 

When R e a ~ ^ r , where n' is any integer, and Ima is 
small, then by substituting the expressions for the Yy's 
given in the Appendix the sum above reduces to a 
Regge pole term of the usual form, i.e., — 7r[/3Pa(—z)/ 
sin7ra]. 

Both terms in (18) define a function of t which is 
analytic in the t plane except for a cut along the posi
tive real axis. As was done in Ref. 8 we shall show that 
the cuts of the two terms in (18) actually cancel in the 
region 0<£<£o. To do that we note that in the strip 

7 Higher Transcendental Functions, Bateman Manuscript Proj
ect, edited by A. firdelyi (McGraw Hill Book Company, Inc., 
New York, 1953), Vol. 1, p. 126, (23). 

8 N. N. Khuri, Phys. Rev. 130, 429 (1963). 
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— K R e ^ < 0 the function (t)v has the following 
representation, 

r 
smirv wJ o x~\-t 

-dx, - K R e K O 

N . N . K H U R I 

more result which will be useful in Sec. IV, 

V 

where (19) 
-O— a,+j) 

We can substitute this representation in the integrand 
of the first term in (18) and obtain 

r00 b(x,s) n (—ty-i 
f(s,t)= dx T r Z T y W - r — - , (20) 

Jo x—t—ie 2=o simr(a—j) 
where 

c(v,a-j) = yj(s)-
v—a-\-j 

(25) 

b (x,s) = / xvc' {y,s)dv. 
27riJ-k-ioo 

(21) 

Now we know that c'(p,s)^(to)~v for large Rez\ Thus, 
we can perform the integration in (21) for x<h and 
obtain by closing the contour to the right 

b (x,s) = — 53 7i (s)x"-', tf < /o • 

This enables us to rewrite (20) as 

r°° b(xfs) 
f(s,t)= I dx -

J to x—t—ie 

(22) 

If Re (a— j)> — | the sum of the series (25) gives (24a) 
and if Re (a— j)<— J it gives (24b). 

III. POWER SERIES EXPANSIONS IN THE 
RELATIVISTIC PROBLEM 

Before we discuss the crossing-symmetric Watson-
Sommerfeld transformation, we shall in this section 
briefly define, for the relativistic problem, amplitudes 
corresponding to c'(v,s) of the previous section and point 
out the relation between their singularities and those 
of the usual partial wave amplitudes. 

We consider elastic scattering of two spin zero 
particles with equal mass, m—1. The invariant ampli
tude, A(s,t), we assume satisfies a dispersion relation 
for fixed s, 

- D T / M 
t0 X^-i ir(—t)a-

dx ' 
x—t—ie sin7r (a—j) a— j)J 

1 rAt{s,tf) 1 r"Au(s,u') 
A(s,t) = - dt'+- I du'. (26) 

7TJ 4 t'—t TJ 4 U' — U 

We can expand each of the two terms above in power 
series and write 

(23) 

where we must remember that Re ( a — i ) > — i . The 
first term has now the proper cut. Similarly one can 
easily check that for the two terms in the brackets the 
discontinuities in the region 0 < / < / o cancel each other. 
We must stress here that in the discussion (18)-(23) 
we have chosen that branch of the function (—t)v 

for which the cut is on the positive real axis. 
From (23) we can now identify the full contribution 

of a pole in the v plane at v=a—j and express it as 

where 

4(*,*) = E ci(v,s)tv+'£ C2(P,S)UV 

ci(v,s) = - At(s,t)t-V-Ht, 
IT J 4 

(27) 

1 r0 0 

c2(v,s)=- Au(s, 
IT J 4 

(28) 

u)u~v~ldu. 

R(t;a(s)-j)=-7j(s) -dx-' 
'a—i) J o x—t—ie sinx (a —j) -

Re(a-j)>-h (24a) 

The series (27) converge for s, t, and u lying inside the 
small Mandelstam triangle, i.e., the Euclidean region. 
The usual partial-wave amplitudes are defined by 
formulas similar to (28), namely,9 

The contribution of a pole in the left half-plane, 
Re (a—j)< — | would be given by 

R0;a(s)-j) = yj{s) 
/•oo 

J to 

Xa~i 

1 f° dt f t \ 
«(i)(W=-/ —QiU+—Ws,t'), 

7TJ 4 2f \ If) 
1 rw du ( u\ 

0(2) ( W = - / —QA H )Au(s,u). 
TJA 2<t \ 2<fJ 

(29) 

x—t—ie 
-dx, 

R e ( a - i ) < - | . (24b) 

Here 4q2=s—4 and the amplitudes of even- or odd-/ 
parity, a±{l,s), are related to a<i) and #(2) by 

0± (W = aa) (W=*=«(2) ( W . (30) 

In the strip, — l<Re(a— i ) < 0 , the representations 
(24a) and (24b) are identical. Finally, we write one 

9 See, for example, V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41, 
1962 (1961) [translation: Soviet Phys.—JETP 14, 1395 (1962)]. 
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One can now easily prove theorems similar to those in 
the previous section relating the singularities of Ci(v,s) 
to those of d(i)(l,s) and vice-versa. Of course similar 
results hold for c2(v,s) and a(2)(l,s). We shall not do 
this here since it involves a trivial repetition of the 
previous section. We would like to make only two 
remarks. 

First, the expressions in (28) are much simpler than 
those in (29) and one might as well study the analytic 
properties of c\ and c2 in the v plane. If for example 
they turn out to have only poles for Re^>— \ then 
a (i) and a^ will have only poles in the right-half I 
plane.10 Second, the argument of Gribov and Pomer-
anchuk leading to the conclusion that a(i),(2) must 
have an essential singularity at l= — l does not auto
matically apply to c\ and c2. An optimist could hope 
that the trouble discovered by Gribov and Pomeranchuk 
is kinematic in nature and related to the poles of the 
Legendre function Qi for negative integral values of /, 
and that ci(v,s) and c2(v,s) do not have the same 
difficulty. 

IV. DOUBLE WATSON-SOMMERFELD 
TRANSFORMATION 

In this section we shall consider a special nonphysical 
case of a function of two variables, f(s,t), and show how 
under certain assumptions one can write a double 
Watson-Sommerfeld transformation which will exhibit 
the Regge poles of both channels simultaneously. We 
do this at this stage because it will make the discussion 
of the full relativistic crossing-symmetric case in the 
next section easier and clearer. 

Let us start with a function f(s,t) which satisfies the 
following representation, 

1 /•« /•• p(s',tf) 
/ M = - ds' df- - . (31) 

W 4 h (s'-s){t'-t) 

Here we have again neglected to write down subtrac
tions, but as we shall see below these will not be 
necessary for our discussion. We stress again that in 
all this section f(s,t) is just a mathematical object 
having certain properties and is not an actual scattering 
amplitude. 

We now define the two variables %\ and z2, 

S l = l + 2 < / ( * - 4 ) , 

z2=l+2s/(t-4). 

In terms of these variables one can write down the 
following two partial-wave expansions 

/ ( * , 0 = £ » ( 2 H - i ) « i ( W P i ( * i ) , (M) 
or 

f(s,t) = Zi(2l+l)a2(l,t)Pi(z2). (34) 
10 Such a suggestion has already been followed by N. Nakanishi. 

He considers a certain subclass of diagrams in a <j>3 theory and 
by studying C\ and c% shows that for that subclass the partial-
wave amplitude is holomorphic for ReZ>0. See N. Nakanishi 
(unpublished). 

From (31) it follows that (33) will converge in an 
ellipse in the %\ plane centered at the origin and with 
semimajor axis z±= 1+8/(5—4). A corresponding ellipse 
exists for (34). 

Let us further restrict the function f(s,t) by assuming 
that both ai(l,s) and a2(l,t) are meromorphic in I in 
the region Re/>—^. For simplicity we take the case 
where both a\ and a2 have only one pole each which 
for some real values of 5 or t shows up in the region 
Re/> — J. For ai(l,s) we have a pole at l=ai(s) such 
that 

Reai (<>)>— I , So<s<Si. (35) 

Similarly for a2(l,t) we take a pole at l=a2(t) such that 

R e a 2 ( 0 > - 2 , t0<t<h. (36) 

For values of s and t outside the intervals given in (35) 
and (36) both ai and a2 move into the left-half plane. 
We take si, / i > 4 and so, /o<4. This last inequality can 
be relaxed and one can take s0, /o>4 but it complicates 
the algebra below. The first inequality, si, £i>4, is 
essential. What we are requiring is that any pole which 
shows up for some value of s (or t) in the region ReZ> — | 
should eventually, as we increase s(t), move back into 
the region R e J < — | . If ai(s) is real and has a positive 
slope below threshold, s < 4 , then it is clear that Si>4. 
We again stress that we are taking only one pole in 
each channel just to simplify the algebra. The argument 
below could be carried through for any finite number of 
poles if each pole satisfies conditions similar to (35) 
or (36). 

Now, finally, we shall assume that for large | /1 both 
ai(l,s) and a2(l,t) have the following asymptotic be
havior similar to (ii): 

a i(W~«r<H4)*W/v / / ; ^ ( l ^ f W J I W / ^ , (37) 

where 
cosh£(*) = l + 8 / ( s - 4 ) . 

In brief we have assumed that both ai(l,s) and a2{l,t) 
have properties very similar to those found by Regge 
for the partial-wave amplitude in potential scattering. 
We are interested in the implications of such properties 
for other expansions. 

We go back at this point to the function f(s,t). We 
can write a double-power series expansion for this 
function 

/ M = E c ( ^ ) ^ ; *,/z=o,i,2,.. . . (38) 
v,n 

This series will converge absolutely for \s\, | ^ | < 4 . 
Again we ask ourselves the natural question: can one 
find a unique analytic interpolation of c(v,ix) regular in 
both v and fx and having the properties necessary for 
performing a double Watson-Sommerfeld transforma
tion? The answer to this question is in the affirmative 
and we shall show in the rest of this section that one 
can obtain a double Regge representation which will 
simultaneously exhibit the poles of both the s and the / 
channels. 
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From (31) we obtain the following expression for 
c(v,fx), 

•i / . C O / . O O 

c(p,fx) = — ds dtp(s,t)s-v-H-»-1. (39) 
IT2 J 4 J A 

Regardless of the subtractions in (31) the integrals 
above converge if Rev and Reju are large enough. In 
fact, it is easy to see that the right-hand side defines 
a unique analytic interpolation of c{v,p) holomorphic 
in the region 

Rez>>sup* Rea2(t), 

Re/x> sups Reaii(s). 

We shall now show that the properties we have as
sumed for ai(l,s) and a2(/,0 will enable us to enlarge 
the domain (40) and to factor out the singular terms. 

To do this we have first to derive some properties 
of p(s,t). Under our assumptions about a\ and #2 we 
can perform the Watson-Sommerfeld transformation on 
(33) and (34). We obtain two representations for f(s,t) 
similar to (3). If we now take the double discontinuity 
of each of these representations we obtain the following 
two expressions for p(s,t): 

p(s,t) = a1(s,t)+-\ ^(s)pjl+ ) 

p(s,t) = a2(s,t)-\ 
2*1 

-$2*{t)Pa 

%{t)paU+-—\ 

2s \ n 

, 4 0 < 0 1 ^ > 4 . (41) 

2s 

•(--)]• 4 < / < / i ; s > 4 . (42) 

Here <xi and a2 come from the discontinuity of the back 
ground term and 

<ri (j,*)'-'*-1'2 as / ->oo , 

<r2(s,t)~s~~1/2 a s s-^oo, 

For s>si (or t>h) no pole term appears and one has 

p f e ) - r 1 / 2 , S>Sly * - » o o ; 

(43) 

p(s,ty c-l/2 t>h, 
(44) 

To factor out the singular terms in (39) we rewrite it 
as follows 

1 /.si ~t\ 

c(v,p) = — / ds I dtp(s^s-'-H-^1 

W4 A 
l /.si /.oo 

H — / ds dt p{s,t)s-v-1f^1 

IT2 J 4 J h 

H — / dtl ds p(s,t)s-v-lr»-1 

7T2J 4 J si 
1 /.OO /.OO 

H — / ds dtp{s,t)s~v-H-^\ (45) 
IT2 J si J h 

The first term above defines a function which is holo
morphic in the region Re*>>— §, Re/*>— J. Similarly, 
it follows from (44) that the fourth term in (45) is also 
holomorphic in the same region. Thus, the only singu
larities in the right-half planes come from the second 
and third terms in (45). In the second term we can use 
the representation (41) for p and in the third we use 
(42). From (43) it follows that the terms with <j\ and 
a2 do not give any singularities in the region, Re*>> — J, 
Re/i> —J, and, thus, (45) can be rewritten as 

l f s i fM / 1 \ 
c(v,n) = c0

t(v,n)+- ds dt s-v-H-»-l[ — ) 
irJ * J n \2i/ 

X [ftWP«1(l+-—Vi8i^j)P«1^l+—- ) ] 

l r { 1 r00 / l \ 
- / dtl dss-'-H-^l — ) 
ITJ 4 J si \2iJ 

(46) 

2* \ 1 

t-4, 

The function CQ(V,P) is now holomorphic in the region 
Re^> —J, Re/x> —|. Using the methods of Sec. I I we 
can now easily investigate the singularities coming 
from the two integrals in (46). However, before we do 
that we reduce (46) to a more convenient form. We 
assume that both ft and ft vanish for large values of 
their respective arguments. This assumption will be 
needed at other points in the discussion and we might 
as well also use it now. By adding and subtracting 
terms which are also regular in Re^> — | , Re/x> —J, to 
the right-hand side of (46) we can change it to the 
following form 

1 rsi r°° / 1 \ 
v,p) = c0"(v,p)+- ds dt s-^H-^A — ) 

7T J 4 J 4 \ 21/ 

x[ftWPa1(l + ̂ Vft*WP«1*(l + - ^ ) l 

c(v,n) = 

1 ftl 
+ - / dtl ds s-'-H-v-1 

irJ 4 J 4 

2s 

G) 
(47) 

x[ft(0i>«/i+—Vft*(0i>«s*(i+— 

Here again Co'(v,p,) is holomorphic in the domain 
R e ^ > — | , Re/x>— J. The integrals in (47) have the 
same singularities in this same domain as those in (46). 

One of the integrations in each term can be performed 
as was done in (15) and (17). Using (17) we get 

c(v,p) = Co(v,p,)+c(v,n;a1)+c(v,iJ,;a2), (48) 
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where11 

-(4)-(M-«i+/)TiyCs') n 1 
c(v,/*;ai) = 2 — ; / dsf s'- , 

j=® 2iriJ4 L ju—ai(s')+i 

p 

(4)-(M-«i*+y)7 l / (^)-

»' 1 /•« r(4J~ 
c (v,fx ;a2) = Z — / dt' t'-^-A 

y=o 27T/J 4 L v 

M - a i * ( j ' ) + i J 

(4)-<"-^>Y2;(0 

(49) 

«2(0+i 
(4)- (^-«2*+3 - )7 2 y*(^)-

, (50) 

The integers n and w' are determined by the inequalities 

| > sups (Reai is) - n) > - \ , 

i>supt(Rea2(t)-n
f)>-h 

The functions yij and y2j- are the new residues and are 
all proportional to ft and ft. An expression for these 
functions in terms of £ and a is given in the Appendix. 
We again assume that not only the fts but also the Y'S 
vanish faster than x~1/2 for large values of their argu
ments. This condition is necessary if one wants pure 
Regge asymptotic behavior and explicit crossing sym
metry. We shall come back to a discussion of this point 
at the end of Sec. V. The function CQ(V,H) is holomorphic 
in the region Re*>> —J, Re/*> —J. I t is clear from (49) 
that C(V,LX; ai) is regular for Rei>> —J. However, in the 
fx plane it is regular everywhere except on the curves 
H=ai(s)—j}j=0}l, - • •, n, which are traced as s varies 
from 4 to infinity, and on the complex conjugate curves 
H=oii*(s)—j. Similarly, c(v,fx;a2) is regular in fx for 
Re/ i>—J, but in the v plane we have to exclude the 
curves, v=a2(t)—j, and their complex conjugates. Al
though the properties of c(v,fx;ai) and c(v,fx;a2) seem 
rather complicated we shall see in a moment that when 
one substitutes (49) and (50) in (38) and carries out 
the summations one obtains just the contributions of 
the poles in a form identical to (24a,b). 

I t is not difficult to verify that, as Rei>—•><*>, co(vyfx) 
~ (4)"" for all ix with Re/*> — \ ; and that as Re/* —>oo, 
Co(^,At)~(4)~/i for all v with Re*>> —J. Similarly CQ(V,H) 
vanishes when either Iiav —» ± oo or Im/j —» ± oo or 
both. The same type of asymptotic behavior holds for 
c(v,fx; ai) and c(v,fx; a2). 

We thus have now all the conditions necessary to 
apply the Watson-Sommerfeld transformation to the 
double power series (38). For \s\, \t\ < 4 we have 

v,fi v,n 

+T,c(v,ix;a2)s
vVi. (51) 

V,{X 

11 The upper limits of integration in (49) and (50) are at first 
Si and h, respectively. However, using our assumption about the 
asymptotic behavior of the Y'S, we can make these limits oo by 
adding and subtracting terms regular in the v and [x half-planes 
and absorbing the extra terms into co(v,fji). 

For the first term one can easily apply the W-S formula 
twice and obtain 

£ c^{v,ix)svt^= / dvl d/x 
".M 4 J -l-ioo J-i-ioo 

x- (-*)'(-0*. (52) 
Sin7T^ SinTT/i 

To sum the other two series in (51) we have to use 
(49) and (50). A typical term would be 

i?0;aiC?)-jO = E svM— f ds' s'-^1 

v,fi \-2wiJ\ 

, (4)-^-^+^T ly(^0 (4)-^-«i*+^)7 l/ {s') 

\ fx- •<*i(s')+j »-ai*(s')+j • ) ] • 
(53) 

The reason for using the same symbol for (53) as was 
used in (24a,b) will become apparent in the next few 
steps. Since | s | < 4 we can easily perform the sum
mation over v and obtain 

/" 
* ( / ;a i ( * ) - i ) = S; — 

X 

ds' 

^o2wiJ 4 s'—s 

(4)-(M-«i+/)7 i y(j ') ( 4 ) - ^ « i * + ^ 7 , i * ( j / ) 1 

ix-ai(s')+j H-a!*(s')+j 
(54) 

As we have already assumed that yij(s) vanish as 
s—»oo, and using the fact that ai(s) and yij(s) are 
analytic in the cut s plane, we can perform the integra
tion over s' by closing the contour with a large circle 
in the s plane and get 

rf4Y-(M-ai(s)+j). 

*(';«!«-./)=£ H 
(4> 7u<s) 

r~~J; 
L n-ai(s)+j 

M = 0 , l , 2 , - (55) 

Here we have made use of the fact that there are no 
ghosts and no bound states. Otherwise, we would have 
extra terms in (55) coming from those values of s on 
the physical sheet for which fx—ai(s)+j vanishes (jx 
and j are integers). The function ai(s) will have a non-
vanishing imaginary part for all values of s on the 
physical sheet except if s is real and lies in the interval 
— oo<,s<4. If for any s—sgy — oo <sg<0, ai(sg) is a 
positive integer or zero, then that will correspond to a 
ghost pole. Following Gell-Mann12 we assume that in 
that case f3(sg) is zero as he demonstrated for the 
Pomeranchuk trajectory. If for s=Sb, 0 O & < 4 , «i(s&) is 
an integer or zero, then that would correspond to a 
bound state at s=Sb and a pole in f(s,t) at that point. 

12 M. Gell-Mann, in Proceedings of the 1962 International Con
ference on High-Energy Physics at CERN (CERN, Geneva, 1962), 
pp. 533-542. 

file:///-2wiJ
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We are excluding such poles for the present since in 
(31) we clearly started with an f(s,t) with only branch 
cuts. At the end of this section we shall come back to 
the case with bound states. 

Finally, we must stress that strictly speaking in all 
this section we should have used ai(s—ie) instead of 
ai*(s) and yij(s—ie) instead of yij*(s). At least the 
integral (54) over s' should be understood in that sense. 

The series (55) is identical with (25) and the notation 
is justified. In fact one can now easily sum (55) by 
using the W-S transformation and the representation 
(19). One obtains 

R(t;ai(s)-j) = yu(s) 

00 #(«!—/) 

x—t—ie 
-dx\ 

R e ( a i ( j ) - y ) < - (56a) 

or 

r z-4 x(«i->') 

« 0 ; a i W - i ) = - 7 i i W / dx-\ : ; 
Jo x—t—ie sin7r(o;i— 7)J 

Re(ai(s)-j)>-i. (56b) 

The results are identical with (24a,b) for the con
tribution of a pole at v—a\—j in the case of a single-
power series expansion. The expressions for the new 
residues Yiy in terms of £1 and ai are also given in the 
Appendix. The function R is easily recognized as an 
incomplete beta function times yij(s). 

We can now write for f(s,t) 

f(s,t) 
1 r—rri™ r>— 

=. — / du 
4J-l-ioo y _ i . 

**-** Co(v,n) 
dp- : (-sYlr-ty 

simrv sinx/* 

+3ZR(t;al(s)-j)+-ZR(s;a2(t)-j). (57) 
3=0 2=0 

The integers n and nf are determined by the inequalities 
given below (49) and (50). The functions R take the 
form (56a) if Re(ai )2—j)<— i and (56b) if Re(ai,2—;) 

So far we have been holding s and / in the region 
\s\, \t\ < 4 . We can now continue the right-hand side 
of (57) into the cut s and / planes. The first term seems 
to have cuts starting at s=0 and / = 0 ; however this is 
not the case as we shall see below. The functions R 
satisfy a Mandelstam-type representation similar to 
(31) and if in varying s or t, (ai,2—j) moves from the 
right-half to the left-half plane R goes in an analytic 
way from the form (56b) to (56a) or vice versa. Note 
that (56a) and (56b) are identical in the strip —1 
< R e ( a i , 2 - i ) < 0 . 

To show that the first term in (57) has the right cuts 

we use (19) twice and obtain 

b(x,y) 
/ C M ) = dx dy-

Jo Jo (x—s)(y—t) 
-XR(t;«i(s)-j) 

+XR(s;ai(t)-j), (58) 

where 
/•—f-H00 

b(x,y) = / dvl 
r-\\-VX} 

dp x'ycofav) • (59) 

Now using the fact that £0(^)^(4)""" for large Re^ 
and that it vanishes for large Imp we can for x < 4 close 
the contour of the v integration to the right and obtain 

b(x,y) = 0, # < 4 , y > 0 ; (60) 

and in a similar manner 

b(x,y) = 0, ;y<4, x>0. (600 

I t is also clear from (59) and the fact that CQ(V,H) 
vanishes when either Imp or Im/* become infinite, that 
that b(x}y) vanishes faster than x~1/2 (or y~l/2) as either 
argument becomes infinite. The integrals in (59) are 
defined as contour integrals. 

We thus finally get, 

/fe •,0= I dxj dy-
b{xyy) 

(x—s—ie) (y—t—ie) 

+ E 2 e « ; a i ( j ) - y ) + E R(s;at(t)-j). (61) 
3=0 3=0 

The first term above never needs any subtractions. One 
could write Mandelstam-type double-dispersion inte
grals for the R functions but these however will need 
subtractions. We have thus explicitly factored out the 
subtractions in terms of Regge pole contributions. 

In the process of deriving (61) we have made several 
assumptions about f(s,t) and about the /3's and a's. 
Most of these assumptions are natural in the sense that 
they have either been proved for the relativistic scat
tering problem or at least conjectured on the basis of 
analogy to potential scattering. The main new assump
tion in the present discussion is the limitation that the 
residues y{%) vanish at least as fast as x 12 for large x. 
This assumption is necessary if Regge behavior is to be 
made consistent with explicit crossing symmetry. We 
shall come back to a more detailed discussion of this 
point at the end of the next section. 

One condition which we have imposed on f(s,t) 
which we would like now to relax is the absence of 
bound-state type poles. Suppose now that / has a 
bound-state pole at s=sb and 0<s&<4. We shall sketch 
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below how the preceding discussion has to be modified 
to obtain the representation (61).13 

In the first place if we have such a pole the repre
sentation (31) will have to be written as 

f(s,t) = T/(s-sb)+L(s,t), 

with 

1 rx r°° 
L(s,i) = — ds' dV— 

W 4 J4 (•?' 

P(s',t>) 

(s'-s)(t'-t) 

(31') 

(31') 

We have taken here an S-wave pole for simplicity. I t is 
clear now that in this case ai (sb) = 0, and the residue T 
is related to 0 by T= —p(sb)/a'(sb). 

We now expand L(s,t) instead of f(s,t) in double-
power series as in (38), 

£(*,0 = Er.M*0',/0*F*M. (380 

The expression for c(zyz) will be unchanged from the 
previous case. The derivation follows identical steps 
until we reach the point where we are summing the 
series X ^ ^ M ^ i ) ^ , as in Eqs. (53) to (55). Here we 
get an extra term in (55) which comes from contribu
tion of the pole in the s plane resulting from the fact 
that \ji—oti(s)+jJi for fx—j=0 vanishes when s=sb. 
This extra term will be given by (YIOC?&)/C/ (sb)) (s—sb)~

l. 
From the Appendix we find that Yio(s&) = j8(s&), since 
a(sb) = 0. Thus, when we substitute back into (31/) 
this extra term will exactly cancel the first term of 
(31/) and we end up with an expression for f(s,t) 
identical to (61). The bound-state pole at s — sb now 
shows up in one of the R functions. 

A similar cancellation holds for higher I bound states 
or for bound state poles in the t channel. 

V. CROSSING-SYMMETRIC WATSON-SOMMERFELD 
TRANSFORMATION 

In this section we shall use the results of the previous 
section to obtain a crossing-symmetric Regge repre
sentation for the invariant scattering amplitude in a 
full-relativistic problem. We consider the case of equal-
mass, neutral, spinless particles. We start by writing 
down the Mandelstam representation for the amplitude 
A(s,t,u), 

A (s,t,u) = Li2(s,t)+L2z(t,u)+Liz(s,u), (62) 

where 

1 r r P«(*'/) 
L12(s,t) = — ds' dt' ; (63) 

w 4 A (s'-s)(tf-t) 
similar expressions hold for L2% and L13. In (63) we 
have not written any subtraction terms. This as we 
shall see below is not necessary. Martin14 has recently 

13 The author is indebted to S. B. Treiman and R. Blankenbecler 
for helpful remarks on this point. 

14 A. Martin, Phys. Rev. Letters 9, 410 (1962). 

proved, under assumptions that are weaker than the 
ones we are going to assume, that the weight functions 
Pa uniquely determine A(s,t,u). In fact, our discussion 
will give another demonstration of this fact. Again to 
simplify the algebra we consider the case where there 
are no single-particle or bound-state poles in the s, t, 
or u planes. As in the discussion at the end of the 
previous section, such poles can be included by a small 
modification of the analysis below and the result will 
not change. 

In the s channel we have the following relations that 
define the cosine of the cm. scattering angle, z±, and 
the cm. momentum qi, 

4gi2 = $ - 4 

* i = l + 2 * / ( * - 4 ) 

-Zi=l+2u/(s-4). 

(64) 

We shall consistently use the indices 1, 2, 3 to denote 
the s, t, u channels, respectively. For each of the other 
two channels there are relations like (64) which can 
be obtained from it by permutting the variables s, t, u. 

As usual one separates A(s,Zi) into even and odd 
parts in Zi and write the partial-wave expansion for 
the s channel as, 

^4(±)(Vi) = Z(2Z+l) 
1 2 

r / It \ / 2u\ 
(65) 

Two other expansions can be written for the t channel 
and the u channel, respectively. 

Proceeding as in the previous section we now assume 
that the ay (±); j= 1, 2, 3 ; can each be analytically con
tinued into the right-half / plane, Rd> —J, except for 
poles which might show up in that region. Following 
Oehme,15 we consider only moving poles. For simplicity 
we again take only one pole in each channel and choose 
that pole to be of positive signature, i.e., a pole in # / + ) . 
For example, in the S channel we assume that a^+)(l,s) 
has a pole at l=ai(s) such that 

Reai(,?)> —I, SQ<S<SI; S O < 4 ; S I > 4 ; (66) 

and Reai(s)<— | for any real s outside the above in
terval. We assume that as s varies from — 00 to 
+ ooai(-)(/,s) has no poles that show up in the region 
Re/> — J. This last assumption is made just to simplify 
the algebra and is not necessary. We make similar 
assumptions about a2 (± ) (l,t) and a3 ( ± ) (^)> introducing 
two more poles a2(t) and a%(u). For each of these poles 
we have inequalities like (66) holding. Finally, we as
sume that each of the amplitudes dj(±) for large \l\ 
behaves as in (37). 

15 R. Oehme, Phys. Rev. Letters 9, 358 (1962). 
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Instead of expanding the whole amplitude A (s,t) in 
a double series in s and /, we write A as the sum of 
three double series one corresponding to each of the 
terms in (62). We write 

Here again we have 

C12(1)CM)^^1/2; t->00; S>4:. (70) 

Similarly by taking the double discontinuity in s and 
u we obtain 

2u 7rr / 2u \ 
+ E clz{vyli)s

vuK (67) pu(s,u) = <ruV(s,u)+-4 &i{s)Pj 1 + ) 
".M UL \ 5—4/ 

The series given here will converge absolutely for s, t, u 
inside the Euclidean region, 0 < s, t, u < 4 and s+1+u=4. 

Following the previous section we can now write the 
Cij as double Mellin transforms of the corresponding p#, 

1 r°° r°° 
G*J (",/*) = — / dxj dypijix^x-^y-*-1, 

irJ 4t J A 

f , i = l , 2 , 3 . (68) 

From here on the argument is identical with that of 
Sec. IV. We shall sketch it briefly, stressing the 
differences. 

I t follows from (68) that Cij(p,fj) is holomorphic in 
the region 

Rev> supa£Reay(#)[], 

Re/*> supx[Reai(#)] . 

To extend the region of analyticity further to the left 
we have to use representations for p# analogous to 
(41) and (42). Applying the Watson-Sommerfeld trans
formation to the ^-channel partial-wave expansion (65), 
and taking the double discontinuity in s and t, we get 

Pn(s,t) = a12
(-1)(s,t)+-

U\ 

*(s)PaA H 

Pi(s)P< 

It 

<»3 
4 < a O i ; ^ > 4 . (69) 

2u \ - | 
*i*Pai*(l+ -J ; 4 < J < J I ; « > 4 . (71) 

The first term satisfies 

(Tna)(s,u)^u~1/2; ^—>oo ; 5 > 4 . (72) 

From the partial-wave expansions in the t and u chan
nels we get four more relations analogous to (69) and 
(71), two from each channel. Thus, for each p# one ob
tains two relations similar to (41) and (42). One of 
these relations exhibits the poles of the i channel and 
the other the poles of the j channel. Again, results 
similar to (44) are valid for each p#. 

I t becomes evident at this stage that the situation 
for each Cij(v,p) is completely analogous to that of the 
previous section and almost identical results follow. 

We first obtain 

f , i = l , 2 , 3 . (73) 

Here C;/ 0 )(^AO is holomorphic in the domain Re^> — §, 
Re/x>—|. The other two functions, Cij(v,n;oti) and 
dj(v,n'yaj) are defined by (49) and (50), respectively, 
and have corresponding analytic properties. 

We can now apply the Watson-Sommerf eld trans
formation to each of the three series in (67), keeping 
s, t, u in the Euclidean region, and we obtain 

\ r~ 5 -H 0 0 /•—•r-K°° \ 

A(s,t,«)=— dvi dn- •—[cn(0Hw)(-sy(-ty+c^<>>(i>,v)(-ty(-uy+cumM(-sy(-u)i''] 

+Eft)C*0;«iW-»-)+-R(«;«iW-'-)]+E(*)Ci2(«;«*(0-'-)+«(5; «*(<)-»•)] 

+E(i)[i?0;a,(«)-r)+i20;a,(«)-f)]. (74) 
r=0 

The functions R are defined in (56a,b). The integers values of s, t, u outside the Euclidean region, always 
tii, i—1,2,3, are determined by the inequalities keeping H - H - # = 4. As in the previous case the first 

i . fR M— W — i (7%) term can be written as the sum of three Mandelstam-
2 Px\ A ; t) 2- \ ) t y p e integrals with the correct cuts and no subtrac-

We can now continue the right-hand side of (74) for tions. The argument is identical to that of (57)-(61), 
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and we get 

r r b12(x,y) 
A (s,t,u) = / dx ] dy \-

J 4 Ji (x—s)(y—t) 

M*o0 r°° r™ buwy) f f 
dx I dy \~ I dx I dy 

4 J i (x—t)(y—u) J± Jt 

bi*(*,y) 

(x—s)(y—u) 

+ Z tR{f,ai(s)-r)+R(u; « i ( j ) - r ) ] ( i ) + E LR(u;a2(t)-r)+R(s;a2(t)-r)^) 

+ £ [U( j ; a , (« ) - r )+U( / ; a , (« ) - r ) ] ( i ) . (76) 
r=0 

The functions bu(x,y) are denned by 

bij(oc,y) = 
2iri 

-ff-ioo 

—\—ioo 

-f-H<» 

dfix^dj^iv^). (77) 
• |—too 

We also have the result that bij(x,y) = Q when either 
x<4 or y<4. Furthermore, bij(x,y) vanish when either 
argument becomes infinite. 

The representation (76) has some interesting features 
other than its explicit crossing symmetry. We originally 
started in (62) with a Mandelstam representation 
which had subtraction terms even though we did not 
explicitly write them down. We ended up in (76) with 
an expression that has three Mandelstam-type terms 
that need no subtractions plus the full contributions of 
all the physical Regge poles in all three channels. By 
physical Regge poles we mean those poles which for 
some real interval of s, t, or u lie in the region Re/> —J.16 

Under the assumption we have made about the 
asymptotic behavior of the residues jir(x)y it is easy 
to check that (76) will lead to the usual Regge-type 
asymptotic behavior for all channels. For example, for 
large positive s and t near zero (i.e., u large and nega
tive), (76) will have a term proportional to 720(0 
X(—s)a2( t ) which gives the usual Regge behavior. 
However, there will also be terms proportional to yir(s) 
and unless these residues vanish faster than s~1/2 we 
would end up with an additional non-Regge-type 
asymptotic term coming from these residues. Of course, 
in our derivation we made use of the condition jir(x) 
^x~~1/2 as x—><x>. If, on the other hand, someone had 
obtained (76) via another procedure, it is clear that the 
crossing symmetric result in (76) will be in contradic
tion with pure Regge behavior if yir{x)^xa as x—>oo 
and a> —\. Thus, our restriction on the y's seems to be 
unavoidable. A similar statement could be made about 
the necessity of having the trajectories move back into 

16 We do not include here any threshold poles. Namely, those 
poles which for energies very near threshold lie arbitrarily close 
to the line Re/=—£ and have Re/>—J, but which move back 
quickly into Re/<—£ as we increase the energy from threshold. 
The contributions of such poles could be easily absorbed into the 
background terms if instead of integrating along the lines Re*> 
= - | we use the line Re^=--J-f-e with e chosen such that all 
threshold poles lie to the left of Re/= — J+e. 

the region Re/<— \ for large positive or negative s, t, 
or u. 

Near a resonance when R e a ^ ^ , n a positive integer 
or zero, and Ima,- is small, the R functions in (76) just 
combine to give us the usual Regge term proportional 
to fiiPai {z)/sirnrai. 

In conclusion, we would like to stress that in this 
paper we have been mainly interested in exploring 
some of the consequences of the analytic properties of 
the partial-wave amplitude as a function of complex 
angular momentum /. Mainly we have shown the close 
relationship between these properties and the analytic 
properties of the coefficients of expansions other than 
the partial-wave expansion as functions of their re
spective indices. For simplicity of the discussion we 
have started by assuming the simplest type of singu
larities in the / plane, i.e., moving poles. However, 
results similar to, but more complicated than, those 
derived in this paper could in general be obtained if 
one starts with more involved singularities in the I 
planes (poles and cuts). Of course, again in that case 
one will have to impose certain conditions on the nature 
of these cuts. 
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APPENDIX 

In this short Appendix we shall give a few of the 
formulas which relate the new residues yt> to &• and ait 

Here we note that oti stands for the position of the pole 
in the I plane and &• is the residue (times [ 2 ^ + 1 ] ) 
of the partial-wave amplitude at 1—a.i. The formulas 
are the same for both the relativistic and nonrelativistic 
case except for the fact that in the first case q2 — j(s—4) 
and in the second q2 = s. 



926 N . N . K H U R I 

The results are 

ft 2«< r(J+a<) 
7*o=-

7* i= -

7*2 = 

( 2 g a ) « V ^ r ( l + a < ) 

2«< r ( i + a < ) 

(2g 2 )^-V^r r(a<) 

ft 2«* r ( i + a < ) 

(2g2)«*-a \A" 2 ir(a<— 1) ' 

ft 2«< r ( j + a < ) 

(Al) 

(A2) 

— §<Rea<<f ; 

ft 2«^-2 

(2g8)«*-* VTT 2 i r (a<-1) (2g»)«<-* \Ar 

a . - (a<- l ) r (a . -+ i ) 

x- (*-a<) Tfe+1) 
R e a t > § . (A3) 

The other yir for r = 3 , 4, • • •, ni can be computed by 
finding the^residue of the function I{a^v) atfthe pole 
v=(Xi—r. As in (15) the function I{a^v) is given by 

I(ai,v) = Pi[ P « / l + — Y " - 1 ^ , R e ^ > - J . (A4) 

Ao V 2^/ 
In the discussion in Sees. I l l and IV we have as

sumed that yir(s) are regular in the cut s plane. How
ever, if we continue (A1)-(A3) in s the gamma func
tions T(s+ai(s)) will have a pole whenever 5 is such 
that at is negative and half-odd integral. For the 
simplicity of the discussion we did assume that we have 
a ghost-killing mechanism similar to that of Gell-Mann 
mentioned below (55). We took ft(s) to be zero for 

those values of s for which cti(s) is a negative half-odd 
integer. We recall that under the usual analytic prop
erties of cti(s) this function is real for s on the physical 
sheet only if s is real and — <x> < s < 4 . 

The imposition of this condition on ft(s) is not really 
necessary. For the poles of jir(s) resulting from the 
r functions in (A 1-3) do not lead to ghost poles of the 
amplitude in the s plane. To see this let ai(si) 
= — (2n+l)/2 where n is an integer. In that case 
7ir(s) will have a pole at s=si. This will lead to an 
additional term in (55) and the contribution of the 
Regge pole will be now 

fir r00 x~^n+^~r 

R'=R(t',ai(s)-r) / dx. (A5) 
S — SiJ 4 X—t 

Here f\r is the residue of yir at s=si. Both terms in 
(A5) have poles at s=si. However, it is clear from (56b) 
that these poles exactly cancel each other and the 
amplitude will have no ghost at s=si. We can use K 
instead of R in (61) and (76). 

Finally, we mention that the factors TQ+ct) also 
appear in Gell-Mann's expressions for the residue 
quantities rj in Ref. 12, pp. 537 and 538. There again 
one presumably assumes that the pole in V as a—> 
—§(2^+1) is destroyed by a zero in the other factors. 
Both in the present case and in that of reference 11 the 
pole in r for a = — J is destroyed by a ( 2 a + l ) factor 
which is included in ft The problem discussed in the 
last three paragraphs here will thus not arise in the 
case of trajectories for which a(s)> — § for all s in the 
interval — co < s < 4 . 


